CSNS Linac

- Major Design Considerations
- Physics Design
- Technique Design
- Summary

1.Major Design Considerations

- 1, Major Design Considerations
- CSNS demands to accelerator: 100kW, 25 Hz, 1.6GeV in phase 1
 - upgradeable to 500kW
- Accelerator complex:

81MeV H- Linac + 1.6 GeV RCS

with a reserved space for linac energy increase for phase 2

• Major concerns:

beam loss control, rapid cycling related issues, low cost and high reliability.

• Major design reference:

starting from Austron, then to J-PARC

• Conservative design and mature technology

•CSNS Design

• Linac design sketch

	Ion Source	RFQ	DTL
Input Energy (MeV)		0.05	3.0
Output Energy(MeV)	0.05	3.0	80/132
Pulse Current (mA)	20/40	20/40	15/30
RF frequency (MHz)		324	324
Chop rate (%)		50	50
Duty factor (%)	1.3	1.05	1.05
Repetition rate (Hz)	25	25	25

- •Major design parameters
- 1, RF frequency choice
- Existing RF power source (cheap, reliability, long-term supply).
- High frequency for high shunt impedance and low structure cost.
- Low frequency for EM quadrupole in Drift Tube with a large space;
- Frequency jump for high energy section.
- Availability of RF power source.

352MHz

402MHz

Major design parameters

2, Beam energy

Defined by the space charge tune spread of the injected beam in the ring.

higher beam energy, lower space charge effect.

3, Beam current

Ring current demand for power upgrade in future.

4, Pulse repetition rate

25Hz for neutron TOF measurement.

5, Pulse structure

Chopped for loss control at injection

Higher current requires higher beam energy.

l(uA)	62.5	125	250
E(MeV)	80	132	250

2, Physics design

Front End : Ion source+LEBT+RFQ +MEBT

Goal: Stable operation with the required beam quality

Ion source

Main parameters of CSNS ion source

lon	H.
Energy (keV)	50
Current (mA)	20
Norm. RMS Emittance (π mm-mrad,)	<0.20
Repetition Rate (Hz)	25
Beam Width (μs)	~500
Lifetime (month)	~1

LEBT

- > The length is shorten to 1680
- The maximum envelope is about 31mm at I=40mA.
- > No waist

LEBT (electrostatic pre-chopper)

- > The sloping deflecting plates with varied width (as the envelope)
- Length: 40mm
- Ground electrode and electron trapper before the deflecting plate
- Beam collimator on the RFQ flange

LEBT (electrostatic pre-chopper)

The chopped beam is designed to lose in RFQ cavityThe deflecting voltage V < 4.5kV

The chopped beam transmission in RFQ versus the deflecting voltage

The beam transmission is 0at V = 4.5kV

RFQ

Main parameters of CSNS RFQ

Parameters	CSNS	ADS
Frequency(MHz)	324	352.2
Injection Energy (keV)	50	75
Output Energy (MeV)	3.0	3.5
Pulsed beam current (mA)	40	50
Beam duty factor	1.05%	6%
Vane length (m)	3.603	4.731
Norm. rms input emittance (πmm.mrad)	0.2	0.2
Inter-vane voltage V (kV)	80	66.5
Maximum surface field (MV/m)	31.68(1.78Kilp)	33(1.8Kilp)
Average bore radius: r0 (mm)	3.565	2.93
Vane-tip curvature: $p t (mm)$	3.173	2.93
Pulsed RF Power (kW)	510	630 Page

RFQ

Parameter cell variation

a: minimum bore radius, *m*: modulation factor, *B*: focusing strength, *Ws*: synchronous energy, Φ *s*: synchronous phase.

2. Physics Design---Front end **RFQ** The cross section of CSNS

Almost same cross section as ADS RFQ. The width Wb of electrode increases from 18mm to 20 mm to facilitate the water cooling channel drilling.

RFQ

Some structural characters for CSNS RFQ

- > The total length 3.62m
- 2 segments with the coupling cell in the middle, each segment technically consists of 2 modules
- > No dipole stabilized rod needed again
- ➢ 48 slug tuners
- > 16 water cooling channels on the cross section

RFQ

Thermal analysis

Water-cooling serves two functions in an RFQ

To take away the power dissipation

To tune the RFQ basically without effecting the field distribution

> 16 water-cooling channels on the cross section

≻Total length =3030 mm

> 8 Q magnets in three bore groups

(the first four Q's serve for beam chopping, the last 4 Q's for transverse beam match)

> 8 Steering magnets

(incorporated into quadrupole magnets through wiring on the quadrupole magnet yokes)

- >2 bunchers for longitudinal beam match
- Beam diagnostic components: 8 BPM,4PR,3FCT,2CT
- Vacuum components: 2GV, 2 set pump systems

- The maximum envelopes (8.5mm) in x ,y at the centers of the fifth and the second quadrupoles, respectively.
- The maximum envelope (54°) in z at the center of the second buncher.

The small envelope difference between 40mA and 20mA

MEBT

> The RMS emittance growths in the x, y, z directions are respectively about 14%, 4. 5% and 1.1% for I=40mA

➢ The RMS emittance growths in the x, y, z directions are respectively about 7.1%, 4.25% and 0.3% for I=20mA

The effective shunt impedance as a function of β (no reduction in Z)

Tank parameters of CSNS DTL

Tank number	1	2	3	4	5	6	7	total
Output energy (MeV)	21.76	41.65	61.28	80.77	98.86	115.8	132.2	132.2
Length (m)	7.99	8.34	8.5	8.85	8.69	8.57	8.67	59.6
space between tanks(m)	0.2	0.27	0.32	0.36	0.39	0.42		1.96
Number of cell	61	36	29	26	23	21	20	216
RF driving power (MW)	1.41	1.41	1.39	1.45	1.45	1.45	1.49	10.05
Total RF power (MW)	1.97	2.01	1.98	2.03	1.99	1.96	1.98	13.92
Accelerating field (MV/m)	2.2 to 3.1	3.1	3.1	3.1	3.1	3.1	3.1	
Synchronous phase (degree)	-30 to -25	-25	-25	-25	-25	-25	-25	

- The total RF power with a 30mA beam in a tank is about 2MW. Each tank is fed by a 2.5MW klystron.
- The length of the tank should be less than 9m.

Focusing design

FD (2βλ) is chosen for transverse focusing

- Strong focusing strength, small beam radius
- High tuning ability

Magnet gradient and length

Beam simulation

- PARMILA, 50000, Gaussian distribution ,30mA
- 3D PICNIC, 15×15 meshes, mesh size 0.2cm
- $\varepsilon_x = \varepsilon_y = 0.26 \text{ mmrad(norm,RMS)}$ $\varepsilon_z = 0.148 \text{MeVdeg(RMS)}$

RMS and total beam size

Error Simulation

>For the magnets:

Transverse displacements: $\delta x, y = \pm 0.05$ mm

Rotations : $\varphi x, y, z = \pm 3 mrad$

Field : $\Delta G/G=\pm 1\%$

>For the accelerating field:

Klystron field: \triangle Eklys/ Eklys=±1%

Klystron phase:φklys=±1deg

>For the DTL tank:

Transverse displacements: $\delta x, y = \pm 0.1 \text{ mm}$ (contain magnet error)

Longitudinal displacements: $\delta z = \pm 0.1$ mm

2. Physics Design---DTL **3D RF modelling** RF coupling port Stem array Drift tube Tank end-wall Post coupler 614 Vacuum port Number Diameter(mm) Slug tuner port Stem 34 60 20 Post coupler 30 Slug tuner 150 12 Vacuum port 120 Page 6

2. Physics Design---DTL <u>3D RF modelling</u>

• Frequency shifts include:

stem and post couplers +1.5MHz half of tuner range +1MHz

• Adjusted the tank diameter

D=56cm to D=56.627cm

Post coupler, stem and slug tuner

3, Technique Design

Main body of ion source

- Discharging chamber
- Extractor
- Flange for discharge chamber
- Chamber for source body
- Cold box and its support
- Sector and Penning magnet
- Accelerating insulation ring
- Beam diagnostic chamber
- Accelerating electrode
- Protecting electrode

lon source

- Power supply system
 - > ARC power
 - Extracting power
 - > Accelerating power
 - Gas valve power
 - Sector magnet power
 - Penning magnet power
 - Cs boiler power
 - Cs transport power
 - Isolating transformer

LEBT

The plate length: 50mm The gap between plates: 20.16 ~33.84 mm (1.2*beam envelope) The width:25.2-42.3mm (1.5*beam envelope)

The deflector, the collimator and the electron-trapping electrode installed in the third chamber

RFQ

Shape and size of the beginning cell and the exit cell

 Parameters
 Value

 h1
 104.238 mm

 h2
 27.500 mm

 h3
 59.745 mm

 d
 41.900 mm

 r
 3.173 mm

 g
 8.005 mm

The geometric parameter value of the beginning cell

The two-dimensional schematic of the beginning cell

The beginning cell

The geometric parameter value of the exit cell

Parameters	Value
h1	104.238 mm
h2	27.500 mm
h3	63.730 mm
đ	45.500 mm
r	3.173 mm
g	8.970 mm

The two-dimensional schematic of the exit cell

The exit cell

RFQ

> The buncher is a copper-plated stainless cavity and the structure of two bunchers is completely same.

There needs for both bunchers :

- Two water-cooled tuners
- > One power coupler
- > Two phase pick-ups.
- > A vacuum port
- Water cooling channels

The mechanic drawing of the buncher

Design

A tank is composed of three technological modules.

EBW

DTL tank

The tank body was made of carbon steel with a copper inner surface using the **Periodic Reverse (PR) electroforming technology.**

2008.9

DTL inner surface polish

The copper-coated thickness of the inner surface of the tank body is 150 um.

DTL Tank vacuum test

A pumping system for a test tank comprises two ion pumps $(1.5 \text{ m}^3/\text{s}^{-1} \text{ for each})$ and a turbo molecular pump $(0.6 \text{ m}^3/\text{s}^{-1})$.

The vacuum test of the first unit tank was carried out in last May. The vacuum reached 8.5 $\times 10^{-4}$ Pa only using a turbo molecular pump(0.6 m³/s⁻¹).

3, Technique Design--- DTL Drift tubes with EMQ

In CSNS DTL,

-The drift tube is made of Oxygen Free Copper (OFC) ;

-Magnet gradient = 75 T/m ;

- Electron Beam Welding ;

-The EMQ work in DC mode.

	-R _e
$g/2 \rightarrow $	EMQ
L_{R_i}	A R _b

Tank number	1	2	3	4
Face angle (degree)	0-30	35-50	50-60	60
Inner radius (cm)	0.2-0.3	0.3	0.3	0.3
Outer radius Ro (cm)	0.2-1	1	1	1
Corner radius Rc (cm)	0.6	0.6	0.6	0.6
Diameter of drift tube (cm)	14.8	14.8	14	14
Flat length (cm)	0-0.5	0.5	0.5	0.5

DTL alignment accuracy

Mechanical Design

DTL tank and drift tube adjustment design

Drift tube assembly alignment and adjustment have been designed..

Drift tubes

2008 4 14

3, Technique Design--- DTL Hall probe measurement

The measured effective field length : x = 42.85[mm], y = 42.83 [mm]. L = (y + x)/2 = 42.84[mm](design 41.3)The good fields length(decrease 5%): x = 28.52[mm], y = 29.39[mm].D = 28.96[mm]

3, Technique Design---- DTL Rotating coil measurement

The magnetic field of the Q-magnet has been measured by a rotating coil.

Table 5: The measured higher-order components of EMQ

Harmonics. No.	Bn.L	Bn/B2
1	4.22587e-003	1.24e-003
2	3.41761e+000	1.00e+000
3	1.05112e-003	3.08e-004
4	1.36139e-002	3.98e-003
5	3.70343e-003	1.08e-003
6	3.79230e-003	1.11e-004
7	1.89259e-003	5.54e-004
8	1.16850e-003	3.42e-004
9	6.89847e-004	2.02e-004
10	5.73321e-004	1.68e-004
11	8.51207e-004	2.49e-004 _{Page}

Rotating coil measurement

The higher order multipole components in the magnetic field center measured also by the rotating coil were sufficiently small, being less than 0.3% in comparison with the quadrupole component.

Figure 7: The multipole components in the center of the magnetic field and the prototype of drift tube

Cooling water experiment

- -Environment temperature 21°C.
- -Experiment duration48h.
- -Working current DC495A.

Table 7: The temperature rise

	Temperature(℃)
Cooling water	16.2
Coil	24.8
Tube shell	22.2
Stem	20.5

RF Coupler

Table10:Coupler Performance Requirements

Frequency	324 MHz
Peak Power	2.0 MW
Pulse Width	0.6 ms
Repetition Rate	25 Hz
Max. duty factor	1.5%
Average power transmitted	30kW

Two types of couplers:

a, coaxial type b, waveguide type

Waveguide type(SNS,CSNS)

- Only one coupler for each tank.
- Ridged-loaded tapered waveguides

The design of RLWG is based on experience from the LEDA RFQ and SNS power couplers .

- Successful application in LEDA, SNS, etc.
- Difficult to tune coupling factor in operation.

Ridge loaded Iris waveguide provides RF power coupling.

DTL vacuum system

The vacuum requirements:

-The static vacuum is 1×10^{-6} Pa

-The dynamic vacuum is 1×10^{-5} Pa

-24 ion pumps (1.5 m^3 / s^{-1} for each) and 12 turbo molecular pump(0.6 m^3 / s^{-1}).

-The outgassing characteristic of the electroformed lining was measured for the samples at room temperature. The conductance modulation method was applied. The measured outgassing rate was about 4.03×10^{-7} Pa·m³/s·m² for 100 hours pumping.

-For a test tank (process chamber), the total outgassing is 2.227×10^{-6} Pa•m³/s.

-All vacuum pumps will be attached to the bottom of the DTL tanks through ports provided with RF shields. The pressure of the system is estimated as 1×10^{-6} Pa.

4, Summary

- CSNS linac consists of an H- ion source, LEBT, 3MeV RFQ, MEBT and 80MeV DTL. It will upgraded up to 250MeV for 500kW CSNS.
- **RF frequency is 324MHz.**
- RFQ is four-vane type which requires a low dipole field and a flat quadrupole field pattern.
- DTL is designed with ramped field and synchronous phase.

Thank you very much for your attention